Princeton University

School of Engineering & Applied Science

James Sturm

Undergraduate Department Representative

Stephen R. Forrest Professor of Electrical Engineering

Room: B410 Engineering Quadrangle
Phone: 609-258-5610
Webpage: Sturm Group


  • Ph.D., Stanford University, 1985
  • M.S.E.E., Stanford University, 1981
  • B.S.E., in Electrical Engineering (engineering physics), Princeton University, 1979

Materials, Processing, and Devices for Microelectronics and Macroelectronics. The continual scaling of VLSI devices to smaller dimensions, higher performance, and higher integration levels over the last thirty years has directly enabled the "information society." Scaling has reduced the cost of intelligence (that is, electronic circuits) by some six orders of magnitude, while performance has continuously increased. Continued growth of the information economy depends on the further scaling of silicon-based electronic devices to the 0.1 micron (nanoscale) level and beyond. Our group works to achieve this goal through the science and technology of silicon-based heterojunctions and three-dimensional integration for VLSI. The work involves the growth of novel materials on a near-atomic scale, materials processing, and finally their application into electronic devices such as heterojunction transistors, FET's, quantum devices, and also optoelectronic devices such as infrared detectors and emitters. Specific focuses in our lab include rapid thermal chemical vapor deposition, silicon-germanium and silicon-germanium-carbon alloys, silicon-on-insulator, and heterojunction devices. On the other extreme, many electronic information processing systems as a whole are limited on both a fundamental and practical economic level by the human-machine interface. For example, the ability to deliver high-quality video is often limited by the display. In this area it is generally desirable to make products big (for example, the display), as opposed to making them small, as in traditional microelectronics; hence the label "macroelectronics" has emerged. Because low cost over a large area is a requirement for widespread impact in the future in this field, materials and technologies very different from VLSI are necessary. For example, polycrystalline and amorphous materials, instead of single crystals, and low-cost alternatives to conventional photolithography and etching are highly desirable. To this end, our lab focuses on organic and polymeric semiconductors because of their ease of deposition over large areas (and applications to organic LED's and FET's) as well as on amorphous and polycrystalline silicon for TFT's. Coupled with these materials are efforts to pattern them and fabricate devices using large-area printing technologies such as ink-jet printing, as well as work to fabricate systems such as flat panel displays on unconventional flexible and lightweight substrates.

Honors and Awards

  • Elected to New Jersey High Tech Hall of Fame, (2008)
  • President's Distinguished Teaching Award, Princeton University (2004)
  • IEEE Fellow (2001)
  • Princeton University SEAS Distinguished Teaching Award (1999)
  • Von Humboldt Fellow (for sabbatical at University of Stuttgart) (1994)
  • W.M. Keck Foundation Award for Engineering Teaching Excellence (1994)
  • NSF Presidential and IBM Young Investigator Awards (1987-8)

Selected Publications

  1. J. D'Silva, R.H. Austin and J.C. Sturm, "Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture", Lab Chip 2015, 10.1039/c4Lc01409j (MAR 2015).

  2. L. Huang, W. Rieutort-Louis, A. Gualdino, L. Teagno, Y. Hu, J. Mouro, J. Sanz-Robinson, J.C. Sturm, S. Wagner, V. Chu, J.P. Conde, and N. Verma, "A System Based on Capacitive Interfacing of CMOS with Post-processed Thin-film MEMS Resonators Employing Synchronous Readout for Parasitic Nulling", J. Solid-State Circuits (JSSC), 50 (4), pp. 1002-1015 (APR 2015).

  3. K.A. Nagamatsu, S. Avasthi, G. Sahasrabudhe, G. Man, J. Jhaveri, A.H. Berg, J. Schwartz, A. Kahn, S. Wagner, and J.C. Sturm, "Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell", Appl. Phys. Lett. 106, 123906 (2015).

  4. B. Visweswaran, P. Mandlik, S.H. Mohan, J.A. Silvernail, R. Ma, J.C. Sturm and S. Wagner, "Diffusion of water into permeation barrier layers", J. Vac. Sci. Technol. A33 (3), 031513-1 (MAY/JUN 2015).

  5. Y. Chen, E.S. Abrams, T.C. Boles, J.N. Pedersen, H. Flyvbjerg, R.H. Austin, and J.C. Sturm, "Concentrating Genomic Length DNA in a Microfabricated Array", Phys. Rev. Lett. 114, 198303-5, (2015).

  6. W. Rieutort-Louis, L. Huang, Y. Hu, J. Sanz-Robinson, S. Wagner, J.C. Sturm, and N. Verma, "A Coomplete Fully Thin-Film PV Harvesting and Power-Management System on Plastic with On-Sheet Battery Management and Wireless Power Delivery to Off-sheet Loads", J. Photovoltaics, Vol. 4, pp. 432-439 (JAN 2014).

  7. K. Nagamatsu, S. Avasthi, J. Jhaveri, and J.C. Sturm, "A 12% Efficient Silicon/PEDOT:PSS Heterojunction Solar Cell Fabricated at < 100 C", J. Photovoltaics, Vol. 4, pp. 260-264 (JAN 2014).  

  8. Y. Hu, L. Huang, W. Rieutort-Louis, J. Sanz-Robinson, J.C. Sturm, S. Wagner, N. Verma, "A Self-Powered System for Large-Scale Strain Sensing by Combining CMOS ICs with Large-Area Electronics", J. Solid-State Circuits, Vol. 49, pp. 513-523 (FEB 2014). 

  9. Y. Hu, W. Rieutort-Louis, J. Sanz-Robinson, L. Huang, B. Glisic, J.C. Sturm, S. Wagner, and N. Verma, "Large-Scale Sensing System Combining Large-Area Electronics and CMOS ICs for Structural-Health Monitoring", J. Solid-State Circuits, Vol. 49, pp. 513-523 (FEB 2014). 

  10. J. Sanz-Robinson, W. Rieutort-Louis, Y. Hu, L. Huang, N. Verma, S. Wagner, J.C. Sturm, "Hybrid Amorphous/Nanocrystalline Silicon Schottlky Diodes for High Frequency Rectification", IEEE EDL Vol. 35, pp 425-427 (APR 2014). 

  11. A. Wu, D. Liao, T. Tlsty, J.C. Sturm, R.H. Austin, "Game theory in the death galaxy: interaction of cancer and stromal cells in tumour microenvironment", Interface Focus 4, 10.1098/rsfs.2014.0028  (JUN 2014).

  12. C.-T. Huang, J.-Y. Li, K.S. Chou, J.C. Sturm, "Screening or remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer", Appl. Phys. Lett. 104 (24), 243510 (JUN 2014).

  13. Q.Z. Zhang, J. Bos, G. Tarnopolskiy, J.C. Sturm, H. Kim, N. Pourmand, R.H. Austin, "You cannot tell a book by looking at the cover:  Cryptic complexity in bacterial evolution", Biomicrofluidics 8 (5) Article 052004, DOI: 10.1063/1.4894410 (SEP 2014). 

  14. J.C. Sturm, E.C. Cox, B. Comella, R.H. Austin, "Ratchets in hydrodynamic flow: more than waterwheels", Interface Focus 4 (5), Article UNSP 20140054 DOI: 10.1098/rsfs.2014.0054 (DEC 2014). 

  15. A. Wu, K. Loutherback, G. Lambert, L. Estevez-Salmeron, T.D. Tlsty, R.H. Austin, and J.C. Sturm, "Cell motility and drug gradients in the emergence of resistance to chemotherapy", PNAS 110, pp. 16103-16108 (2013).

  16. C.-T. Huang, J.-Y. Li and J.C. Sturm, "Implant Isolation of Silicon Two-Dimensional Electron Gases at 4.2 K", IEEE EDL-34, pp. 21-23 (JAN 2013).

  17. Other publications ( ).