James Sturm

Position
Stephen R. Forrest Professor of Electrical and Computer Engineering
Role
Chair, Department of Electrical and Computer Engineering
Office Phone
Assistant
Office
B410 Engineering Quadrangle
Education
  • Ph.D., Stanford University, 1985
  • M.S.E.E., Stanford University, 1981
  • B.S.E., in Electrical Engineering (engineering physics), Princeton University, 1979
Advisee(s):
Bio/Description

Stephen R. Forrest Professor of Electrical and Computer Engineering
Associated Faculty in the Princeton Materials Institute (PMI)

Materials, Processing, and Devices for Microelectronics and Macroelectronics.

The continual scaling of VLSI devices to smaller dimensions, higher performance, and higher integration levels over the last thirty years has directly enabled the "information society." Scaling has reduced the cost of intelligence (that is, electronic circuits) by some six orders of magnitude, while performance has continuously increased. Continued growth of the information economy depends on the further scaling of silicon-based electronic devices to the 0.1 micron (nanoscale) level and beyond.

Our group works to achieve this goal through the science and technology of silicon-based heterojunctions and three-dimensional integration for VLSI. The work involves the growth of novel materials on a near-atomic scale, materials processing, and finally their application into electronic devices such as heterojunction transistors, FET's, quantum devices, and also optoelectronic devices such as infrared detectors and emitters. Specific focuses in our lab include rapid thermal chemical vapor deposition, silicon-germanium and silicon-germanium-carbon alloys, silicon-on-insulator, and heterojunction devices.

On the other extreme, many electronic information processing systems as a whole are limited on both a fundamental and practical economic level by the human-machine interface. For example, the ability to deliver high-quality video is often limited by the display. In this area it is generally desirable to make products big (for example, the display), as opposed to making them small, as in traditional microelectronics; hence the label "macroelectronics" has emerged.

Because low cost over a large area is a requirement for widespread impact in the future in this field, materials and technologies very different from VLSI are necessary. For example, polycrystalline and amorphous materials, instead of single crystals, and low-cost alternatives to conventional photolithography and etching are highly desirable. To this end, our lab focuses on organic and polymeric semiconductors because of their ease of deposition over large areas (and applications to organic LED's and FET's) as well as on amorphous and polycrystalline silicon for TFT's. Coupled with these materials are efforts to pattern them and fabricate devices using large-area printing technologies such as ink-jet printing, as well as work to fabricate systems such as flat panel displays on unconventional flexible and lightweight substrates.

Selected Publications
  1. J. D'Silva, R.H. Austin and J.C. Sturm, "Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture", Lab Chip 2015, 10.1039/c4Lc01409j (MAR 2015).

  2. L. Huang, W. Rieutort-Louis, A. Gualdino, L. Teagno, Y. Hu, J. Mouro, J. Sanz-Robinson, J.C. Sturm, S. Wagner, V. Chu, J.P. Conde, and N. Verma, "A System Based on Capacitive Interfacing of CMOS with Post-processed Thin-film MEMS Resonators Employing Synchronous Readout for Parasitic Nulling", J. Solid-State Circuits (JSSC), 50 (4), pp. 1002-1015 (APR 2015).

  3. K.A. Nagamatsu, S. Avasthi, G. Sahasrabudhe, G. Man, J. Jhaveri, A.H. Berg, J. Schwartz, A. Kahn, S. Wagner, and J.C. Sturm, "Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell", Appl. Phys. Lett. 106, 123906 (2015).

  4. B. Visweswaran, P. Mandlik, S.H. Mohan, J.A. Silvernail, R. Ma, J.C. Sturm and S. Wagner, "Diffusion of water into permeation barrier layers", J. Vac. Sci. Technol. A33 (3), 031513-1 (MAY/JUN 2015).

  5. Y. Chen, E.S. Abrams, T.C. Boles, J.N. Pedersen, H. Flyvbjerg, R.H. Austin, and J.C. Sturm, "Concentrating Genomic Length DNA in a Microfabricated Array", Phys. Rev. Lett. 114, 198303-5, (2015).

Google Scholar Profile

Honors and Awards:

  • Elected to New Jersey High Tech Hall of Fame, (2008)
  • President's Distinguished Teaching Award, Princeton University (2004)
  • IEEE Fellow (2001)
  • Princeton University SEAS Distinguished Teaching Award (1999)
  • Von Humboldt Fellow (for sabbatical at University of Stuttgart) (1994)
  • W.M. Keck Foundation Award for Engineering Teaching Excellence (1994)
  • NSF Presidential and IBM Young Investigator Awards (1987-8)
Research Areas
Biological & Biomedical
Energy & Environment
Materials & Devices
Robotics & Cyberphysical Systems