Quantum computing and condensed matter physics with microwave photons

Fast, low-power manipulation of spin ensembles in superconducting microresonators

Anthony J. Sigillito, Hans Malissa, Alexei M. Tyryshkin, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, Mike L. W. Thewalt, Kohei M. Itoh, John J. L. Morton, Andrew A. Houck, David I. Schuster, S. A. Lyon

We demonstrate the use of high-Q superconducting coplanar waveguide (CPW) microresonators to perform rapid manipulations on a randomly distributed spin ensemble using very low microwave power (400 nW). This power is compatible with dilution refrigerators, making microwave manipulation of spin ensembles feasible for quantum computing applications. We also describe the use of adiabatic microwave pulses to overcome microwave magnetic field (B1) inhomogeneities inherent to CPW resonators. This allows for uniform control over a randomly distributed spin ensemble. Sensitivity data are reported showing a single shot (no signal averaging) sensitivity to 107 spins or 3×104 spins/Hz−−−√ with averaging.