
I. INTRODUCTION

T HRESHOLDERS are the simplest kind of binary deci-
sion maker, outputting “one” if a signal is above a cer-

tain threshold value and “zero” if below. Much more than dig-
ital logic buffers, thresholders are analog-input, digital-output
devices that allow a physical interface between these repre-
sentational domains. They are found at the heart of digital-to-
analog converters, comparators, and operational ampliÞers [1].
Thresholding also plays a central role in processing architec-
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tures with ubiquitous conversion between analog and digital do-
mains, such as spiking neural networks [2]. A spiking photonic
neuron computational primitive was recently reported [3]–[5],
but its scalability to larger systems hinges on improvements in
thresholder performance. All-optical nonlinear processing de-
vices have long been sought to reduce the strain on optical-elec-
tronic-optical conversion in high-capacity Þber communication
systems. As optical interconnects Þnd application at progres-
sively shorter scales in computing systems, reliable, integrable,
and efÞcient all-optical processing devices will become espe-
cially critical to support speed and energy performance scaling.
Integrated devices that can reduce noise corruptions to a binary
signal have been demonstrated [6]; in contrast, a thresholder
must produce an approximately binary output from on a con-
tinuous valued analog input signal, thus making a decision. Ul-
trafast all-optical thresholders have previously been constructed
using Þber based interferometers [7], [8]; however, the long in-
teraction lengths required for switching in nonlinear Þbers (me-
ters to kilometers) and transfer function ripple in the above-
threshold one-level region limit these techniques to specialized
applications.

Microring resonators (MRR) exhibiting a Kerr nonlinearity
can be used to considerably reduce the area and power needed
to achieve self-switching by increasing the effective interac-
tion length and instantaneous optical powers through coherent
power buildup [9]. The

system operation speed.
Threshold

ers are characterized in large part by their nonlinear
transfer function of output energy against input energy, which
is ideally the shape of a step function. Past experiments with a
single resonator enhanced MZI (REMZ) have demonstrated that
the shape of the energy transfer function is piecewise linear until
a smooth saturation, unlike the piecewise constant step func-
tion required for thresholding [10]–[12]. This behavior, often
called self-switching, is common in many nonlinear optical de-
vices [13]–[17]; however, none to the authors’ knowledge are
suitable for thresholding due to the lack of a ßat one-level re-
gion. We would like to emphasize the difference between a non-
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TABLE I
COMPARISON OF THRESHOLDING PERFORMANCE CRITERIA FOR THREE

DEVICES. PARAMETERS FOR THE REMZ AND DREAM CORRESPOND TO 4 m
RADIUS MICRORINGS IN SOI

linear transmission function, which has the ratio of output to
input as the dependent variable, and a nonlinear transfer func-
tion, which instead plots the output as a function of the input
(Fig. 2). Ideal self-switching devices exhibit step-like transmis-
sion functions; however, this corresponds to piecewise linear
transfer functions unsuitable for thresholding. In [18], an in-
terferometer with side-coupled and in-line MRRs was simu-
lated, but only in steady-state and not in the context of signal
processing. In our treatment, the transient response of a device
to pulsed inputs are explored for more effective application to
thresholding operation.

In this paper, we will greatly expand on the analysis and
design methods pertaining to results originally presented in
[19], in addition to showing new results of 50 GHz pulse
thresholding. The dual resonator enhanced asymmetric MZI
(DREAM), shown in Fig. 1, is similar to the REMZ, but elim-
inates its detrimental characteristics using the complementary
action of two microresonators, one in each arm of a MZI. Since
the transmission of an interferometer depends on the phase dif-
ference of two arms, undesirable elements of the natural MRR
response can be made to interfere destructively, while a slight
parameter asymmetry between the two MZI arms accentuates
the net thresholding effect with ßat levels representing zero and
one. Because of its increased number of parameter degrees of
freedom and a complex interplay of nonlinear elements, manual
optimization of DREAM thresholding behavior can quickly
overwhelm a designer. When using standard numerical Þnite
difference time domain (FDTD) simulations, this optimization
process also takes an impractically long time. To accelerate sim-
ulation, we have analytically derived approximate steady-state
solutions of nonlinear MRR behavior and incorporated this
solver into a fully automated DREAM optimization program.
This new software design tool can automatically locate param-
eters that are optimal for thresholding by comparing hundreds
of simulated transfer functions at a rate about three orders of
magnitude faster than FDTD.

II. MODELING COMPLEMENTARY OPTICAL RESONATOR

INTERFEROMETRY

In much the same way that a CMOS gate uses the comple-
mentary action of two similar, opposing components to achieve
novel behavioral phenomena, the DREAM exhibits fundamen-
tally new optical thresholding characteristics. To achieve a con-
stant one-level value above threshold, the nonlinear transmis-
sion must decrease in inverse proportion to input power. Intu-
itively, this occurs if the bottom MRR has a smoother phase

Fig. 1. The DREAM layout. While not visible in the layout diagram, asym-
metry between the two arms is due to a coupling ratio that is not 3 dB, a
difference between MRR coupling parameters and , and a Þxed arm length
difference.

Fig. 2. A comparison of the nonlinear transfer function and the nonlinear
transmission function for two ideal devices. The ideal thresholder has a transfer
function that approaches a Heaviside step function, while the self-switching or
transparency-inducing device has a step-like transmission function.

transfer characteristic that saturates at a higher input power/en-
ergy. The phase difference between the two arms will be similar
below the sharp phase change in the upper arm, which leads to
complete destructive interference. As the upper arm saturates in
transmissivity, the lower arm phase transfer will begin to ap-
proach that of the upper arm above threshold, resulting in a
net decreasing transmission function above threshold. With the
available degrees of freedom, the opposing action of the MRRs
can be tuned to provide the net desired thresholding shape. In
terms of parameters, this means having a weakly coupled MRR
(higher Þnesse) in the top arm and a moderately more strongly
coupled MRR (lower Þnesse) in the bottom arm. The relative
power saturation offset requires an asymmetric MZI coupler
of power coupling ratio less than 0.5 ( 3 dB). To get com-
plete destructive interference in the zero-level, the output cou-
pler must then have the opposite power coupling ratio: .

In this section, we will add to the theory of nonlinear
switching in microrings to obtain an analytical approximation
to the phase transfer function of a MRR. For rapid optimization,
we use a MATLAB script with an analytical approximation to
the phase transfer function of a MRR to efÞciently compute
the power transfer function, which we score according to an
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objective functional that favors functions of a step-like shape.
A gradient descent algorithm minimizes this score. The roughly
optimized parameters are then ported to a more physically
accurate simulation in VPI Photonics software for veriÞcation.

A. An Analytic Steady-State Transfer Function

The nonlinear resonator is best understood in terms of the cir-
culating power buildup factor and single pass phase shift .
The linear resonator equations dictate that the buildup factor is a
peaked function of phase detuning from resonance. In the pres-
ence of nonlinearity, the phase also becomes dependent on the
power circulating in the cavity, which is the product of incident
power and its buildup factor. These two physical relationships
between buildup and phase allow us to Þnd a self-consistent op-
erating point of the MRR in steady state. The resonance rela-
tionship of a linear MRR with round trip loss and coupling
parameter can be expressed

(1)

The phase difference acquired for a third order nonlinearity
can be expressed as an intensity-dependent refractive index .
In a cavity, this phase shift from the small signal original
depends on . This leads to the equation

(2)

where is the free space wavelength, and is the effective
round trip length of the microresonator ( for a MRR of ra-
dius ).

By equating (1) and (2), we obtain a transcendental equation
of ; however, we would like to obtain analytical solutions for
the sake of thresholder optimization acceleration, where hun-
dreds or perhaps thousands of transfer functions are simulated
and compared. To capture the switching properties of MRRs, we
need only be concerned with around one narrow resonance
peak of phase width on the order of for resonators with
Þnesse greater than 5. In this domain of interest, a quadratic ap-
proximation for has error bounded to less than , so
we will make a Lorentzian approximation to the resonance peak
centered at in (1):

(3)

We then obtain a cubic equation, which has well known so-
lutions.

(4)

This equation can be solved analytically with the cubic for-
mula to Þnd the function . Cubics are guaranteed to have
at least one real root, and some have three real roots. In the case

of the nonlinear resonator, values of for which there are three
real roots are regions of bistability; the medial root being an un-
stable solution. The one or two stable solutions for given
by the cubic formula are substituted into

(5)

to give the complex transmission of a nonlinear microring.

B. DREAM Analytics

The DREAM has Þve design degrees of freedom ( , , ,
, and ); where is the power coupling ratio of the asym-

metric MZI; is the amplitude self-coupling coefÞcient
(i.e., reßectance) of the directional coupler to the MRR in the
top (bottom) arms, which is directly related to the Þnesse of each
resonator; is the initial offset in radians from the resonance
condition, which is controlled by the optical wavelength of the
input; is the Þxed phase bias between the two arms. The sen-
sitivity of the response to the input wavelength (via ) means
the power transfer functions of a given design are only valid for
a single operating wavelength.

The DREAM has one microring in each arm and an additional
phase bias that results from a path length difference between
the two arms. It’s output power is

(6)

C. MZI Biasing

The Þxed phase difference between the two arms of the MZI
is set in order to get maximum destructive interference for small
signal inputs that are below threshold. Its optimal value can be
determined a priori to thresholding simulations; however, this
optimum depends on the other degrees of freedom. The small
signal (linear) phase shift imparted by a MRR of a certain cou-
pling ratio and single-pass phase offset is straightforward to
derive [9]. The net phase difference can be cancelled by biasing

to satisfy the equation

(7)

III. THRESHOLDER OPTIMIZATION

A. Optimization Software Using Analytic Solutions

We have so far described how the transfer function can be de-
rived analytically from device parameters, but there are several
other modules required for automated optimization. Minimiza-
tion algorithms require a scalar objective function that is de-
Þned on the parameter space. There are several distinct features
of interest for thresholding, including ßatness of the zero-level
regime, ßatness of the one-level regime, sharpness of the transi-
tion, width of the bistable region, absolute threshold power, and






